
Documentation
Version 1.0

1. Introduction 2
2. Installation 3

Build-in 3
URP 3
HDRP 4

3. Notes 7
4. Usage SwitchControllers 8

4.1 MainSwitchController (Please read before others, reusing explanations) 9
Field Definitions 10

Action Targets 11
SetActive 12
Movement 12
Teleportation 12
Rotation 12
ExtendedOptions 13
SwingLoop 14
Sounds 14
Field Definitions 15

SubSwitchControllers 18
Field Definitions 19

Preconditions 21
Field Definitions 22

4.2 NodeWalkerSwitchController 22
4.3 CustomSwitchController_ConstantRotator 25
4.4 CustomSwitchController_SwitchMaterial 26
4.5 CustomSwitchController_CombinationProxy 27
4.6 CustomSwitchController_ToggleStateFilterProxy 29



4.6 Create your own SwitchControllers 30
5. Usage SwitchControllerStateSetter 31

5.1 OnCollision_SwitchControllerStateSetter 31
5.2 Create your own SwitchControllerStateSetter 32

6. Visualization and Configuration 32
6.1 The coloring in the inspector 33
6.2 Hierarchy icons 34
6.3 Gizmos in scene view 35

7. Lever generator (in demo scene) 38

1. Introduction
SwitchNTrap is a compact, state based controlling system for traps, elevators, switches,
levers, doors and much more. The main workflow is based primarily on rotation and
movement of objects. You can easily create chaining events for example if something is
touching a specific object it opens a door somewhere, it moves a trap and after it's finished it
does something else. SwitchNTrap comes with a pack of modular 3D PRB assets (that you
can use standalone) for your dungeons or other types of environment.

Create your own combination of materials for your custom lever in the demo scene with the
Lever generator.

The system supports any rotations without limits, movement on multiple position nodes,
swinging of objects and manipulation of some extra options such as material switching.

It provides visual support for better control of things in your scene. Drag and drop your
sounds. You can build in minutes the whole interactive level after some practice. It can
enhance your work in any kind of game greatly.

Let your fantasy free!

Latest documentation link
If you need help use my discord channel:

Help on Discord

http://www.titaniumworld.de/snt_documentation.pdf
https://discord.gg/wR87xZgrCD


2. Installation
Please do not move the package to other asset folders or the icons will not work. It will be
supported in later versions.
But you can safely move or copy prefabs and materials and place your custom scripts
outside.

For better understanding and visual experience it's best to test the demo scene in the
build-in rendering pipeline project.

Build-in

1. Import the package.
2. Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity” and look

at the examples.

URP
1. Import the package.
2. Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity”.
3. Convert the materials/shaders to URP (Make copy of your project in case)
4. (Optional) adjust Skybox and light for the demo scene. The Demo scene was made

on Built-In RP and will look darker on URP on default.
5. Look at the examples.



HDRP
1. Import the package.
2. Open the demo scene “Assets\Savchenko\SwitchNTrap\DemoScene.unity”.
3. Convert the materials to HDRP (Make copy of your project in case)
4. (Optional) adjust Skybox and light for the demo scene. The Demo scene was made

on Built-In RP and will look darker on HDRP on default.
5. Look at the examples.



6. If InputSystem error occurs. Fix it by setting “Active Input Handling” to “Both” in
player settings.



7. If some of the transparent materials turn black, give it some time(~5 minutes). If it
wont help, select light in the scene and if it still wont help, check those few materials
and set “Surface Type” to transparent. I will include separate packages in later
versions for all rendering pipelines.



3. Notes
- For scene-view gizmos, button “F” is your best friend. Focus on objects with

SwitchController to have a better visualization on it.
- For gizmos visualization MainSwitchController or NodeWalker must be selected and

gizmos must be turned on.

- Do not move SwitchNTrap to other directories in the assets folder. It's not supporting
it right now, but will change in a later version.

- While using movement or rotation manipulating SwitchControllers do not change the
rotation or rotation by other scripts or events (RigidBody physics) on the same
ActionTarget or it could lead to not expected results.

- The hierarchy icons use lazy load to not hit on performance of the editor. By selecting
items, icons will reload.

- Use demo scene for examples
- Make a copy of prefabs if you want to modify them or else the demo scene can

break.
- For easier configuration of target objects for movement or rotation, place them into

parents.
- For use on older mobiles: The assets have mid-poly count and could be used in older

mobile devices as well. In case the performance hits, the materials must be reduced
and the maximum texture size must be decreased in configuration for that. (duplicate
material, remove Normal- Map, heightmap… til it fits your needs)



4. Usage SwitchControllers
SwitchControllers are working as state machines. There are basic four states:

- Deactivated: Deactivating task is done.
- Activating: Task is doing job and is transferring itself on finish to Activated.
- Activated: Activating task is done.
- Deactivating: Task is doing job and is transferring itself on finish to Deactivated.

Depending on the script the tasks vary.
Some scripts are reduced to Activated/Deactivated state instead of Activating->Activated.
All positions used in the configuration are “localPositions” so you might put TargetObjects
into parents to easier setup the positions from 0.

The scripts that implement ISwitchController can be connected in chains. You can easily
write your own scripts that will work with others in a chain.
Look at the demo scene for examples or you can just drag and drop combinations to the
asset folder to create prefabs for your game from it.

All SwitchControllers implement ISwitchController interface.
You can easily set the state of any SwitchController inside any of your
scripts by calling for example (for Activating):



var switchController = targetGameObject.GetComponent<ISwitchController>();
switchController.OnSetStateByCaller(TriggerStateEnum.Activating);

look for example on OnCollision_SwitchControllerStateSetter.

You can get current state by:
switchController.OnGetStateByCaller();

There are also a lot of public fields which you can access depending on the script.

4.1 MainSwitchController (Please read before others, reusing
explanations)

Handles:
- movement between two positions.
- rotation from an angle to an angle. Can create swinging movement with a third angle.

Supports negative rotations if you want to rotate in specific direction and there is no
limit in rotation angle(You can rotate for example 3600° or -3600° 10 times around)

- SetActive (Enable/Disable) object. Note: Do not put the script for SetActive on the
same object as the action target, because else it will disable the script on
Deactivated state.

- adding sounds for each state and situation.

The concept is to have “ActionTarget” which should be moved rotated ot SetActive.
After the task is done depending on configuration the state of the SwitchController will
change and notify “SubSwitchControllersToTriggerOnStateChange” if needed. You can add
multiple “ActionTargets” and multiple “SubSwitchControllers”.



Field Definitions

StartState State on load of the script.

For example on MainSwitchController, on
start will set rotation or position given in
rotation and movement settings if set.

OverrideCurrentStateWithStartStateOnStart Should the current state be instantly
overloaded by the start state on start
without executing state changing tasks?

OldState (ReadOnly) Previous state.

CurrentState Current state of SwitchController.

Sleep Pauses all update actions. The state can
still be set from outside.

TriggeredCount (ReadOnly) How many state changing events had been
received.

TriggeredCountWithActionFinish
(ReadOnly)

Count of how many times triggered with
successful finished action. Useful if for
example a switch should trigger something
if exactly 3 times triggered.

ActionTargets Configuration for GameObjects to perform



action on.

SubSwitchControllersToTriggerOnStateCha
nge

Other GameObjects with SwitchControllers
that are connected to the state change of
this one. This is needed to create chaining
events. If state of this SController changes
it will trigger the configuration to change
state on SubSwitchControllers(connected
SwitchControllers)

IsOnlyOnceTriggable Only one state changing event is allowed,
others after will be blocked.

InvertOwnExternalStateChange If activated the state changing attempts
from outside will be inverted.
Activating->Deactivating,Deactivating->Acti
vating.

RestoreStartStateAfterTrigger Automatically restores the start state after
state changing action was received and
finished.

PreconditionsForOwnStateChange Conditions when to execute state changing
actions or rewrite depending on other
SControllers.

Action Targets

The Action Target contains definitions for tasks. The field “TargetGameObject” is any
“GameObject” that should be moved for example. With “SetStateOnDone” you can let the
task change the state only on specific conditions. For example if you want to rotate
something but it should not be relevant for state change you can mute it.



SetActive

To deactivate on Deactivated state or activate on Activated state the TargetGameObject
mark “SetActive”. It disables other options.

Movement

For basic movement mark “UseMovement”.
For example, given the data on the following snippet, “PositionOnActivated” means that on
“Activating” it will move to x:10,y:0,z:0 and switch controllers state to “Activated” if no extra
tasks are given to wait for. On “Deactivating” the reverse to “.localPosition=Vector3(0,0,0)”.

Teleportation

To Teleport on any stateChange the TargetGameObject set
PositionOnActivated=PositionOnDeactivated but not x:0y:0z:0.

For example:

will teleport the TargetGameObject to “localPosition” x:100,y:10,z:0 if the state changes.

Rotation

For basic Rotation mark “UseRotation”.
The same game goes here. Set which rotation you want the TargetObject to have on each
state. The Rotation direction can go in a positive or negative direction. The rotations can go
over (+/-)360° degrees. By “ShowDebugInfo” check you can see what exactly is done with
rotation chunks.



ExtendedOptions
By expanding “ExtendedOptions” you can do even more.

For example, instead of using linear speed you can use “SpeedFlow”. This chart represents
for X-axis the lifetime of a task from 0 to 1 (1=100% done) and on Y-axis the speed
multiplier. By using it you can make for example that something moves faster or slower on
certain progress.



Rotation supports rotating of the “TargetGameObject” in any direction (-/+) and any Angle. If
the delta angle is used over 360° it will spin over.

SwingLoop

If it's desired to create a swinging object, in rotation settings the “useSwingLoop” option can
be used. It adds to “Activating” state another axis configuration. So on Activating the
“TargetObject” rotates from OnDeactivated Rotation axis-> onActivatedRotationAxis and
from there to SwingLoop and from there goes back to Activated axis
repeating(SwingLoop->Activated, Activated->SwingLoop, SwingLoop->Activated…).

Sounds

You can add sounds for progress states of rotation and movement.

If it's desired to use looping repeating sounds for progress mark “Loop” checkbox.
SwitchConroller automatically generates AudioSources for “OneShot” and “Looping” sounds,
if the component has Audio source it will be used or copied. So if extended control over
sound is needed please add AudioSource on the TargetObject with custom configuration.



Swing Loop sounds have some extra sound options to repeat the sounds delayed, progress
based or by direction change. More options for sounds will be added in later releases to
other configurations.

Field Definitions

ActionTargets

ShowDebugInfo Show the debug info, for example rotation
chunks.

TargetGameObject GameObject on which to perform desired
action.

SetStateOnDone When the action of the current GameObject
is finished, should it set the desired next
state of the SwitchController?

SetNextState: Set the desired next state.

DoNotSetNextState: Action of this object is
not relevant for state change.

SetNextStateCombined: Only if other
ActionTargets with the same state are
finished as well, the desired next state will
be set.

IsDone The action of the current GameObject was
finished.

UseSetActive On ‘Activated’ will enable GameObject, on
‘Deactivated’ disable.

UseRotation Rotate the target object?

CurrentRotationProgress(ReadOnly) Progress in percent of the delta rotation.

UseExtendedRotationSettings Enable extended settings.

RotationSpeed Speed of rotation steps.

RotationSpeedFlow Chart for more control of speed. X-Axis:
from 0-1 lifetime of action, Y-Axis: Speed
multiplier.

InternalRotationModel(Debug only) Shows extended data of rotation steps.

InternalPreviousRotationModel(Debug only) Shows extended data of previous rotation
steps.

RotationOnActivated Rotation angles which should be reached
on Activated state.



RotationOnDeactivated Rotation angles which should be reached in
the Deactivated state.

UseSeparateSFlowOnDeactivating Separate settings for Deactivating state, if
not used, will use RotationSpeedFlow.

RotationSpeedFlowOnDeactivating Chart for more control of speed. X-Axis:
from 0-1 lifetime of action, Y-Axis: Speed
multiplier.

UseSwingLoopOnActivating Should third angle be used with constant
bidirectional rotation from ‘Activated’ axis to
third axis.

If it's desired to create a swinging object, in
rotation settings the “useSwingLoop” option
can be used. It adds to “Activating” state
another axis configuration. So on Activating
the “TargetObject” rotates from
OnDeactivated Rotation axis->
onActivatedRotationAxis and from there to
SwingLoop and from there goes back to
Activated axis
repeating(SwingLoop->Activated,
Activated->SwingLoop,
SwingLoop->Activated…).

RotationSwingLoopWhileOnActivating Rotation angles which should go from
Activated angles on Activating state to this
angles and reverse.

UseSeparateSFlowForSwing Separate setting for SwingLoop, if not used,
will use RotationSpeedFlow.

RotationSpeedFlowSwing Chart for more control of speed. X-Axis:
from 0-1 lifetime of action, Y-Axis: Speed
multiplier.

UseMovement Move the target object between two
‘localPositions’?

CurrentMovementProgress Progress in percent of the delta movement.

UseExtendedMovementSettings Enable extended settings.

MovementSpeed Speed of movement steps.

PositionOnActivated localPosition which should be reached on
Activated state.

PositionOnDeactivated localPosition which should be reached on



Deactivated state.

MovementSpeedFlow Chart for more control of speed. X-Axis:
from 0-1 lifetime of action, Y-Axis: Speed
multiplier.

UseSeparateMSFlowOnDeactivating Separate settings for Deactivating state, if
not used, will use MovementSpeedFlow.

MovementSpeedFlowOnDeactivating Chart for more control of speed. X-Axis:
from 0-1 lifetime of action, Y-Axis: Speed
multiplier.

UseSounds Should sounds be used?

AudioSource Audio source for ‘OneShot’ sounds. If not
set, will be created automatically on the
target GameObject. For more control of
audio settings, create one and configure it.

AudioSourceForLoopSounds Audio source for ‘Looping’ sounds. If not
set, will be copied automatically from
‘AudioSource’ to the target GameObject.
If ‘AudioSource is not set, it will be created
automatically.’ For more control of audio
settings, create one and configure it.

SoundActivationStarted AudioClip to play on Activating state
beginning.

SoundActivationInProgress Second audioClip to play on Activating state
beginning, supports looping.

LoopSoundActivationInProgress AudioClip should be looping.

SoundActivationEnded AudioClip to play on Activating state finish.

SoundDeactivationStarted AudioClip to play on Deactivating state
beginning.

SoundDeactivationInProgress Second audioClip to play on Deactivating
state beginning, supports looping.

LoopSoundDeactivationInProgress AudioClip should be looping?

SoundDeactivationEnded AudioClip to play on Deactivating state
finish.

SoundRotationSwingLoop AudioClip to play on swing loop action.

SoundRotationSwingPlayMode PlayAtDirectionSwitch: Play sound each
time SwingLoop changes its direction.

Delayed: Play with delay
RepeatPercentPassed: Play the sound



cumulative percent passed. For example
5-> 5%,10%,15%..

SoundRotationSwingLoopDelayTime Delay time in seconds

RepeatForPercentPassed Repeat each percent

LastSoundState(ReadOnly) Internal last sound state

CurrentSoundState(ReadOnly) Internal current sound state

SubSwitchControllers

When operation has finished on ActionTarget after the state is set to new one its possible to
send state changing events to other objects that have SwitchController attached to them.
This way it's easily possible to create chaining events. For example some switch has been
triggered, the door is opening, after that ground starts to move when its finished, trap
disappears.

This is done by adding “SubSwitchControllers” to the
“SubSwitchControllerToTriggerOnStateChange” list. Is possible to delegate state only if the
owner SwitchController has a specific state or/and rewrite the current state to another one
for SubSwitchController.



For example ObjA has finished, Set its own state from Activating to Activated, then iterate
through SubSwitchControllers in the list and set Activating on them. Other SwitchControllers
will get state Activating and do actions. Switch stepped on->moving itself to
ground->finished->open door1, open door2.

Field Definitions

SubSwitchControllersToTriggerOnStateChange

TargetGameObjectWithSController Other GameObjects with SwitchControllers
to set new state on.

OwnStateRequiredToBeIn Precondition needed its own state to set
state on target.

RewriteAnyStateWith Transfer: Sends its own state to target.
Toggle: Sets target state to opposite state.
Others: Set the given state.

DeOrActivateToDeOrActivating If the own state is in Activated, set it to



Activating on target, same for
Deactivated->Deactivating.

InvertStatesForTargetSControllers Activating->Deactivating,
Deactivating->Activating.
Same can be done with using rules with
‘RewriteAnyStateWith’

IgnoreStateProtection Disables preconditions on target
SwitchController

AdvancedSettings Enables advanced settings

DelayInSeconds Set a new state with delay after given
seconds.

BlockSubSwitchEvents Set state on target SwitchController but
block it from changing the state on its
SubSwitchControllers when actions on it
are done.

Parameters Parameters are string combinations which
can be sent to give extra options.

You can add your own parameters on your
custom SwitchControllers inside
OnSetStateByCaller method.
Parameters can be combinated ’paramOne,
paramTwo’

Current build in parameters:
—----------------------------------------------
MainSwitchController:

‘Ignorestatechangenow:true’ : ignores the
given state change

‘sleep:true’/’sleep:false’ : sets
SwitchController to sleep
—----------------------------------------------
NodeWalkerSwitchController:

‘Ignorestatechangenow:true’ : ignores the
given state change

‘sleep:true’/’sleep:false’ : sets
SwitchController to sleep

‘nodewalker:reversedir’ :reverse movement
direction
—----------------------------------------------



OwnStateRequiredToBeInVariation Change this flag only in your custom
SwitchControllers depending on your
implementation, it changes the options in
the ‘OwnStateRequiredToBeIn’ dropdown.

Preconditions

Sometimes it is needed to create preconditions to block state change of SwitchController or
rewrite state by specific constellation. For example lan leaver can be only activated if other
leavers are set with specific states. To block the leaver from activating preconditions can be
used.

The preconditions are to read from top to down. “CombineWithNextCondition” combines
expression with the next condition if it's set to “And”. In Case of “Or” it's acting on its own
without combining to the next expression.

“... Preconditions”: Preconditions which needs to be met before own state can be changed
by another SController

“AutoOverrideState..”: Automatically sets the SwitchControllers state to desired if targets
change. It ignores the internal state check.



Field Definitions

Precondition

OtherGoWithSController Depending on the state of given
GameObjects SwitchController.

PreState Given objects state needs to be in.

CombineWithNextCondition ‘And’ combines with the next condition, ‘Or’
works as a standalone condition.

4.2 NodeWalkerSwitchController
Handles:

- Movement between multiple positions(nodes).
- Looping on default on the nodes.
- Can stop and trigger other SwitchControllers passing on nodes.
- Moves on ‘Activating’ state, custom configuration on Deactivating state.

With MainSwitchController you can set movement between two positions but if you want to
create something that can run between multiple positions or loop on them the
NodeWalkerSwitchController can be used. Do not use MainSwitchController with movement
options and NodeWalker on the same TargetGameObject they will conflict.

NodeWalkerSwitchController uses part of the same settings as MainSwitchController. Please
refer to the missing pieces to the explanation above!



Unlike the MainSwitchController you cannot add a list of ActionTargets, you are moving
around only one object which is TargetForAction. It's best practice to add the target object
into a parent object and set its localPosition to 0. then you can move it around and add
movement nodes where you want the object to move. On Activated state the object will
move to the nodes. In AdvancedSettingsConfiguration you can set WaitOnNodeForSeconds
time if you want the object to wait on the Node. you can also trigger other
SubSwitchControllers when you reach the Node or after waiting time has finished.

It's possible to set movement rotation to the direction of which the object is facing when it
reaches the nodes. In the next updates I will add more functions for rotation on Nodes.



you can also define which actions the object should take when it is getting into state of
Deactivating.

NodeWalkerSwitchController

For missing fields, see above
‘MainSubSwitchController’ explanation

NextNodeIndex Node index, where TargetObject is moving
to.

LastReachedNodeIndex Last reached Node index.

IsWaitingOnNode Is the targetObject waiting on Node
currently?

GameObjectTargetForAction TargetObject to move on nodes.

MovementDirection Movement direction of TargetObject.

MovementRotation Movement rotation option.

MovementRotationSpeed Speed of movement rotation.

ShouldLoopOnActivating Should move in a loop, from last node to
first node when reached?

DoOnDestinationReached Options for actions to take when reaching
the last node in a non looping context.

DoOnDeactivating Which actions should be taken when the
NodeWalker state is state to Deactivating?

DeactivatedDestinationNodeIndex Node index for DoOnDeactivating action.

ReverseDirectionAfterDeactivated Should the direction be reversed/inverted
after the Deactivated state has been set.

MovementNodes List of nodes to move to with configurations.

MovementNodes

Position Position of node to where the TargetObject
should move to.

MovementSpeed Speed of the movement.
(Will add SpeedFlow chart next updates)

AdvancedSettingsConfiguration Expand advanced settings.

WaitOnNodeForSeconds Wait an amount of seconds on the node
and then keep moving.



SubSwitchControllersToTriggerAfterWait After waiting has finished on the node, set
state on given SubSwitchControllers.

see above ‘MainSubSwitchController’
explanation

SubSwitchControllersToTriggerOnReached When reached the node, set state on given
SubSwitchControllers.

see above ‘MainSubSwitchController’
explanation

4.3 CustomSwitchController_ConstantRotator

Handles:
- Constant rotation of TargetObject by given speed on an axis.

Simple SwitchController that is used to constantly rotate objects.

For missing fields, see above
‘MainSubSwitchController’ explanation

GameObjectTargetForAction TargetObject to rotate.

RotationDirectionSpeed Rotation speed for each axis to rotate. Use
-x, -y,-z to Rotate opposite.



4.4 CustomSwitchController_SwitchMaterial

Handles:
- Switches/Replaces materials by given material slot/index.
- Sets material by given material slot/index.

By given materials this SwitchController can depending on the state switch/replace
materials.

Or it can set a material by index. If the renderer has less materials, the list will be increased.

For missing fields, see above
‘MainSubSwitchController’ explanation

GameObjectTargetWithMaterial Target GameObject to switch materials on.

Mode SwitchMaterials: Switch one material to
another one and back depending on state.

SetMaterial: Set material to desired on
Activated or Deactivated.

AffectedMaterialSlot Affected material slot/index of the mesh
renderer.

StateRequiredForAction On which state to perform the desired
action.



MaterialActivated Material to set on Activated state.

MaterialDeactivated Material to set on Deactivated state.

MaterialForAction Material to set on action.

4.5 CustomSwitchController_CombinationProxy

Handles:
- Simple combine of states on multiple SwitchControllers to set other

SubSwitchControllers depending on them.

When all callers match the same state ‘Activated’ (or by inverting with
‘InvertExternalStateChange’ -> Deactivated) the SubSwitchControllers will set to Activating.
The same or even more advanced effect can be reached by using preconditions on
MainSwitchController and NodeWalker! It's just a weaker all-around version of that, which
can be used with any SwitchController.

By setting DefaultStateWhenNotCombined to something else than ‘ignore’ it will emit to
SubSwitchControllers chosen state if the caller SwitchControllers does not match same
combination.

On Example screenshot you can see the following setting: If caller element0 and 2 is set to
Activated and element1(inverted) to Deactivated, the SubSwitch-Dummy will be set to
Activating. If the Caller constellation is opposite, the subSwitchController will be set to
Deactivating.



By using DefaultStateWhenNotCombined -> Deactivated for example it needs only one
wrong caller to set the SubSwitchControllers to Deactivated state.

CurrentState Current state of the SwitchController

DefaultStateWhenNotCombined When the caller combination is not in same
state (or by inverting) this default state will
be set.



Callers

OtherSwitchControllers_ToTriggerOnStatus
Change

SubSwitchControllers to set state when this
controller's state changes.

Simpler version of previously explained
field.

Callers

LastStateReceived(ReadOnly) Last state of the caller that is known

OtherSwitchController_Caller The GameObject with SwitchController that
has an impact on the SubSwitchControllers
state.

InvertExternalStateChange To change the state of SubSwitch
controllers all callers must have the same
state or they can invert by this field the
condition.

For example with three callers:
0: Activated,
1: Deactivated(Inverted)
2: Activated

SubSwitchControllers = Activating

4.6 CustomSwitchController_ToggleStateFilterProxy

Handles:
- Sets state of target Switch controller only if certain state is received

Standalone weaker version to do the same as the ‘RewriteAnyStateWith’ field on the
SubSwitchController list.’ Useful in custom scripts without implementing
SubSwitchControllerSettingModel.



4.6 Create your own SwitchControllers
You can easily connect your scripts as SubSwitchControllers to other SwitchControllers by
implementing the ISwitchController interface. They will automatically receive icons in the
hierarchy window and you will be able to change their state by other SControllers.

Copy, rename the file CustomSwitchController_TemplateYourScriptExample.cs and add your
logic. After that you can add them to any SubSwitchController field.

ISwitchController interface wants you to implement those methods:
- GetGameObjectAttachedTo: Used by hierarchy window icon draw. Do not change it!
- GetCurrentStateByCaller: To read the current state. Do not change it!
- OnSetStateByCaller: Other SwitchControllers or StateSetter where you attach your

SwitchController will write to this Method a new state. You can write your full logic
here if you don't want to use Update Method.



5. Usage SwitchControllerStateSetter
To set SwitchController state it is needed to call its OnSetStateByCaller(...) method. Scripts
which are doing it and are not SwitchControllers themself, which dont have their own state,
are defined here as “StateSetter”.

5.1 OnCollision_SwitchControllerStateSetter
Handles:

- Sets a state of SwitchControllers depending on collision events.

This script can be used to activate switches if you step on them, changing the state of
SwitchControllers by colliding with a collider.

You can add multiple target objects with SwitchControllers into the configuration list.
Define the “LayersForCollisionDetection” or else unwanted GameObjects will trigger the
state change on SwitchControllers.

Similar implementation is used by the ExampleButtonClick_SwitchControllerStateSetter.cs
but adds InputEvent for old EventSystem. So after Player collides with collider he needs to
press the right key to switch state of the attached GameObject.
Look into them to create your own StateSetters depending on your needs.
The UiTextComponent is optional in the demo script.



5.2 Create your own SwitchControllerStateSetter
To create your own StateSetter scripts simply get objects with SwitchControllers (That
implements ISwitchController) and call OnSetStateByCaller on them. Add implementation of
IStateSetter interface to your script to make it receive an icon in the hierarchy view.

You can use the example to simply create your StateSetter.
Copy, rename the file SwitchControllerStateSetter_TemplateYourScriptExample.cs and add
your logic or look at OnCollision_SwitchControllerStateSetter.cs or
ExampleButtonClick_SwitchControllerStateSetter.cs. After that you can set the states of
SwitchControllers.

6. Visualization and Configuration
Switch and trap provides three types of helpers for your project :

- The coloring in the inspector
- The icons in hierarchy window that indicates which script is attached
- The gizmos in the scene window which shows connection of SwitchControllers. They

support MainSwitchController and NodeWalker the best.

If you don't want to use any of these you can turn the options off:



6.1 The coloring in the inspector
The SwitchControlles provides you with a lot of options to control objects. The coloring helps
to keep easier track of main fields(blue tones) and optional or advanced settings (green
tones). Other colors helps to keep apart some other settings.



6.2 Hierarchy icons
To keep better control on attached scripts to objects there is an option to show the kitten
icons on the hierarchy window. The border indicates which kind of script is attached. You can
implement existing light interfaces in your custom scripts to mark them with icons.



MainSwitchController is attached.

NodeWalker is attached.

ConstantRotator is attached.

Any other script which implements the
“ISwitchController” interface is attached.
Could be yours. just implement the
ISwitchController interface. This will add
icon and allow your script to be
chain-connected with SwitchControllers.

Implement those methods:

OnSetStateByCaller(..)
and
OnGetStateByCaller();

Scripts attached that can set the state of
SwitchControllers for example scripts on
collider which activates buttons, see
“OnCollision_SwitchControllerStateSetter”.
You can create custom scripts and
implement “IStateSetter” to add to them the
icon.

6.3 Gizmos in scene view
To help visualize the connection between SwitchControllers you can use the
SwitchNTrap-gizmos. The color indicators and labels show the configuration of the
SwitchControllers.



The lines for MianSwitchController can show the state transmission to other
SwitchControllers or preconditions and positions. Compare the gizmos on demo scenes with
the scripts to fully understand the meaning of the indicators and colors.

To easily read the labels, zoom-in the object by focusing it first with the button “F” and rotate
the perspective.



Sometimes you don't want to see labels because they can overload the view. just turn them
off locally by clicking the checkbox.



This way you get better control on full configuration of complex connections.

7. Lever generator (in demo scene)

In the demo scene you can combine your custom levers.

Just step with the character on the ground switches to choose the materials.



Select in the scene the leaver, drag and drop it in your asset folder, give it a name.




